Department of Physics
GC University, Faisalabad

CURRICULUM

M.Sc Physics
(Two Years Program)
Annual System

GC University,
Faisalabad.
SYLLABI & COURSES OF READING
(M Sc PART-I)

PAPER-I MATHEMATICAL METHODS OF PHYSICS

Vector Analysis:

Divergence theorem, Stokes’s theorem, cylindrical, spherical and curvilinear coordinates.

Special Functions:

Legendre polynomials, Bessel functions, associated Legendre functions and spherical harmonics spherical spherical Bessel functions, Neumann functions.

Boundary Value Problem:

Boundary value problem in physics, the Sturm-Liouville problem.

Green’s Function:

Definition, Green’s functions for the Strum-Liouville operator Green’s functions in electrodynamics.

Functions of Complex Variable:

Complex functions, analyticity, Cauchy-Riemann equations, multivalued functions, Cauchy’s integral formula, Taylor and Laurent series, the residue theorem and its applications.

Fourier Series and Transforms:

Fourier series and its complex form, applications of Fourier series, representations of a function, properties of Fourier transforms, Fourier integral theorem, Fourier sine and cosine transforms, applications of Fourier transforms, Laplace transform.

Tensor Analysis:

Cartesian tensors, coordinate transformation, covariant and contravariant tensor, tensor algebra, metric tensor.

Books Recommended:
PAPER-II CLASSICAL MECHANICS

Lagrangian Formalism:

Brief survey of Newtonian mechanics of a single and system of particles, constraints, D. Alembert’s principle, Lagrange’s equation and its application, calculus of variation and Hamilton’s principle, derivation of Lagrange’s equation from Hamilton's principle, contact transformations.

Central Force Problem:

Two-body central force problem and its reduction to the equivalent one body problem, the equation of motion and solution for one body problem laboratory and centre of mass co-ordinate systems and their mutual transformation, Rutherford scattering formula.

Hamiltonian Formalism:

Legendre transformation and Hamilton equation of motion, cyclic co-ordinates, conservation theorems and physical significance of the Hamiltonian for simple cases.

Canonical Transformations:

The canonical transformations and their examples, the Lagrange’s and the Poisson’s brackets, integrals of motion, Poisson’s theorems.

Hamilton-Jacobi theory:

Hamilton-Jacobi theory, connections with canonical transformation, action-angle variables.

Books Recommended:

Classical Mechanics, by J. W. Leech, Methuen and Co. Ltd.,(1958)

PAPER-III QUANTUM MECHANICS

Breakdown of Classical Concepts and Old Quantum Theory:
Particle aspects of radiation and Planck’s hypothesis, wave aspects of matter and de Broglie’s hypothesis, discrete levels and Bohr’s hypothesis.

Formulation of Quantum Mechanics:

Mathematical preliminaries, quantum mechanical wavefunction, Hilbert space, observables and operators, operator equations, the eigenvalue equation, commutation relations, expectation value, postulates of quantum mechanics, correspondence principle, complimentarity principle, Schrodinger equation and discrete energy levels, state functions and overlap integral, uncertainty principle.

One Dimensional Systems:

The potential step, reflection and transmission coefficients, potential well and bound states, potential barrier, tunneling, tunneling through thin films, alpha decay, one-dimensional models of molecules and delta function potential, Kronig-Penny model, harmonic oscillator, raising and lowering operators.

Angular Momentum:

Angular momentum operator, z-component, total angular momentum; eigenvalues, eigenfunctions and vector diagram, parity.
Central Potential:
Motion in a central potential, the hydrogen atom, energy spectrum, quantum numbers and degeneracies.

Spin and Statistics:
The Zeeman effect, matrix operators, spin statistics and exclusion principle, Pauli’s two components formalism, identical particles, fermions and bosons, symmetry and antisymmetry of wavefunctions.

Approximation Methods in Quantum Mechanics:
Time independent perturbation theory, simple applications, damped linear harmonic oscillator, hydrogen like atoms in magnetic field, time dependent perturbation theory, transition probability, emission and absorption of radiation, WKB approximation and its applications, variational method and its applications.

Formal Theory of Quantum Systems:
Hilbert space, operators and state vectors, bras and kets, orthonormality, Dirac delta-function, completeness, expectation value, degeneracy, compatible and incompatible observables, discrete and continuous spectra generalized uncertainty relation, harmonic oscillator, ladder operators, Schrodinger’s equation of motion, Heisenberg’s equations of motion, constants of motion, parity, conservation laws and invariance.

Books Recommended:
Introduction to Quantum Mechanics by Dicke, Wittke, Addison-Wesley (1974).

PAPER-IV SOLID STATE PHYSICS-I

Crystal Structure:
Periodic arrays of atoms, fundamental types of lattices, index system for crystal planes, simple crystal structures, direct imaging of atomic structure, non-ideal crystal structures.

Reciprocal Lattice:
Diffraction of waves by crystals, scattered wave amplitude, Brillouin zones, Fourier analysis of the basis, quasi crystals.

Crystal Binding and Elastic Constants:
Crystals of inert gases, ionic crystals, covalent crystals, metals, hydrogen bonds, analysis of elastic strains, elastic compliance and stiffness constants, elastic waves in cubic crystals.

Crystal Vibrations: Phonons I:
Vibrations of crystals with monatomic basis, two atoms per primitive basis, quantization of elastic waves, phonon momentum, inelastic scattering by phonons.

Thermal Properties: Phonons II:
Phonon heat capacity, anharmonic crystal interactions, thermal conductivity, electronic heat capacity.

Noncrystalline Solids:
Diffraction pattern, glasses, amorphous ferromagnets and semiconductors, low energy excitations in amorphous solids, fiber optics.

Point Defects:
Lattice vacancies, diffusion, color centers.

Dislocations:
Shear strength of single crystals, dislocations, strength of alloys, dislocations and crystal growth, hardness of materials.

Books Recommended:

PAPER-V ELECTRONICS

The Semiconductor Diode:
The junction diode, the diode voltage-current equation, Zener diode, light-emitting diodes, capacitance effects in the pn diode.

The Diode as Rectifier and Switch:
The ideal diode model, the half-wave rectifier circuit, the full-wave rectifier circuit, the bridge rectifier circuit, measurement of the ripple in the rectifier circuit, the capacitor filter, the \(\pi \) filter; \(\pi-r \) filter, regulated power supply.

Models for Circuit:
The black box concept; active one-port models: the voltage-source circuit; active one-port models, the current-source circuit: the two-port network, the h-parameter equivalent circuit, power in decibels.
Junction Transistor as Amplifier:

The junction transistor, the volt-ampere curves of a transistor, the current amplification factors, relations between the amplification factors, the load line and Q point, the basic transistor amplifiers, simplification of the equivalent C-E circuit, the transconductance, g, the common-emitter amplifier, conversion of the h parameters, the common-collector amplifier, performance of the C-C amplifier, comparison of amplifier performance.

DC Bias for the Transistor:

Choice of the quiescent point, variation of the Q point: fixed transistor bias, the four-resistor bias circuit, design of a fixed-bias circuit, design of the bias-stabilized C-E amplifier, voltage feedback bias, design of voltage-feedback bias circuit, bias for the emitter follower, design of the emitter follower circuit.

The Field Effect Transistor:

The junction field-effect transistor; the MOS field-effect transistor, the load line for the FET, obtaining bias for the FET, the FET as an amplifier.

Frequency Response of RC Amplifiers:

Cascaded amplifier, the amplifier passband, the frequency plot, low-frequency response, the low-frequency limit, the unbypassed emitter resistor, high-frequency equivalent circuits and the Miller effect, high-frequency response, the frequency limit of the transistor, the common-base connection at high frequencies, bandwidth of cascaded amplifiers.

Negative Feedback in Amplifiers:

The black box with feedback, stabilization of gain by negative feedback, bandwidth improvement with negative feedback, reduction of nonlinear distortion, control of amplifier output and input resistances, a current series-feedback circuit, voltage shunt-feedback circuit, voltage feedback with the FET.

Integrated Amplifiers:

The integrated amplifier, the differential amplifier, the Darlington compound transistor, introduction to operation amplifier.

Power Amplifiers:

Classification of power amplifier, power relations in the class a amplifier, voltage limitations, determination of output distortion, the push-pull circuit and class B operation, performance of a class B push-pull amplifier, output circuits without transformers, phase inverters for push-pull input.

Oscillators:

Oscillator feedback principles, the Hartley and Colpitts oscillators, practical transistor oscillators, crystal control of frequency, resistance-capacitance feedback oscillator.
Waves Shaping and Switching Circuits:

Diode clipper, diode clamper, differentiator, integrator. Multivibrators, the bistable multivibrator, the one-shot or monostable multivibrator and astable multivibrator.

Digital Circuits:

Binary numbers, Binary codes, Logic switches and gates, Logic Circuits.

Books Recommended:

PAPER-VI PHYSICS LABORATORY-I (GENERAL AND MODERN PHYSICS)

Note: (i) The candidate must perform at least eight experiments from the list given below.

50% weightage must be given to viva-voce about apparatus, theory of experiments and estimation of errors.

Measurement of wavelengths of sodium light, difference of wave lengths and thickness of thin film e.g. mica using Michelson interferometer.
The study of spectra using Fabry-Perot interferometers.
The determination of Cauchy’s constants using spectrometer.
To study some aspects of Ferromagnetism by drawing B. H. curve.
Measurement of speed of light using laser source rotating mirror method.
To study Zeeman effect.
To determine e/m of an electron using a fine beam tube.
To study Hall effect in an n-type/p-type semiconductor or a metal.
To measure the critical potential of mercury by Frank-Hertz method.
To measure Planck’s constant by studying photoelectric effect.
To measure work function of a metal and verification of Richardson’s equation.
Determination of dielectric constant of liquid and solid.
To determine the characteristic of G. M. tube and measure the range and maximum energy of \(\beta \) particles.

Measurement of half-life of a radioactive source.

Characteristics of G.M. counter and study of fluctuations in random process.

To determine charge of an electron by Millikan’s oil drop method.

PAPER-VII **PHYSICS LABORATORY-II (ELECTRONICS)**

Note: (i) The candidate must perform at least EIGHT experiments from the list given below.

50% weightage must be given to viva-voce about apparatus, theory of experiments and estimation of errors.

To construct a power supply and study the rectified wave form (measurement of peak value), ripple factor and regulation (without regulator).

To construct a voltage-regulated power supply with Zener diode.

To construct a single stage CE transistor voltage amplifier and study gain, input impedance, output impedance, half power points by sine/square wave testing and effect of bias on the output and measurement of distortion.

To construct a source follower FET voltage amplifier and study gain, input impedance, output impedance, half power points by sine/square wave testing.

To construct an R-C oscillator and compare it with a standard frequency.

To construct a Hartley or Colpitts oscillator and measure its frequency.

To construct and study the wave forms at the base and collector of the transistors of a free running a multivibrator.

To construct and study of the height, duration and time period of the output pulses in a monostable and bistable multivibrators with reference to the input Trigger.

To construct from discrete components OR, AND, NOT, NAND, NOR exclusive OR Circuits and verify their truth tables.

Study of wave shaping circuits of diode, integrators and differentiators.

To construct the operational amplifier (741) by using discrete components and study its frequency response.
SYLLABI & COURSES OF READING
(M Sc PART-II)

PAPER-I SOLID STATE PHYSICS II

Free Electron Fermi Gas:
Energy levels in one dimension, effect of temperature on the Fermi-Dirac distribution, free electron gas in three dimensions, heat capacity of the electron gas, experimental electrical resistivity of metals, umklapp scattering, motion in magnetic fields, Hall effect, thermal conductivity of metals, ratio of thermal to electrical conductivity, nanostructures.

Energy Bands:
Nearly free electron model, origin of the energy gap, magnitude of the energy gap, Bloch functions, Kronig-Penney model, wave equation of an electron in a periodic potential, restatement of the Bloch theorem, crystal momentum of an electron, solution of the central equation, empty lattice approximation, approximate solution near a zone boundary, number of orbital in a band, metals and insulators, Tight-Binding Method.

Homogeneous Semiconductors:
Band gap, equation of motion, effective mass, physical interpretation of the effective mass, effective masses in semiconductors, silicon and germanium, intrinsic carrier concentration, intrinsic mobility, impurity conductivity, donor states, acceptor states, thermal ionization of donors and acceptors, thermoelectric effects, semimetals, superlattices.

Inhomogeneous Semiconductors:
The semiclassical treatment of inhomogeneous solids, fields and carrier densities in the equilibrium p-n junction, elementary picture of rectification by a p-n junction, drift and diffusion currents, collision and recombination times fields, carrier densities and currents in the nonequilibrium p-n junction.

Diamagnetism and Paramagnetism:
Langevin diamagnetism equation, quantum theory of diamagnetism of mononuclear systems, rare earth ions, Hund rules, iron group ions, crystal field splitting, quenching of the orbital angular momentum, spectroscopic splitting factor, Van Vleck temperature-independent-paramagnetism, paramagnetism, quantum theory of paramagnetism, paramagnetic susceptibility of conduction electrons.

Books Recommended

PAPER-II STATISTICAL PHYSICS

Classical Statistical Mechanics:
Phase space description of physical systems, macrosystems and macrosystems, ensembles, entropy in statistical mechanics, microcanonical ensemble, canonical ensemble, grand canonical ensemble, diatomic molecules, heat capacities of diatomic gases and crystals.

Quantum Statistics:
Basic concept of quantum statistics, Pauli exclusion principle, Bose-Einstein and Fermi-Dirac distributions, frequency spectrum of a black body and Planck’s radiation law, Liouville’s theorem, equality of probability for the perfect gas, energy distribution of conduction electrons in metals, degree of gas degenerations, completely degenerate Fermi-Dirac gas.

Special Topics:
Concept of fluctuations, Bose-Einstein condensation, introduction to density matrix approach.

Books Recommended:
Elementary Statistical Physics by C. Kittle.
Fundamentals of Statistical and Thermal Physics by R. Reif.
Modern Physics An Introducing to its Mathematical Language by William A. Blanped.
Statistical Physics by Pouition Longman.

PAPER-III RELATIVITY AND COSMOLOGY

Special Relativity:
Galilean relativity, concept of ether, Michelson-Morley experiment, Einstein’s postulates of special relativity, Lorentz transformations, structure of spacetime, Minkowski spacetime tensors, the light-cone, line element, four-vectors, relativity of simultaneity, time dilation, proper time, length contraction, twin paradox, velocity transformation and velocity addition.

Relativistic Mechanics:
Force equation in relativity, rest mass, kinetic and total energy, conservation of energy and momentum.

Elements of Tensor Calculus:
Manifolds and coordinates, curves and surfaces, tensor fields, Lie derivative, geodesics, Riemann tensor, metric tensor.

General Relativity:
Principles of general relativity, equation of geodesics deviation, Einstein’s field equations.

Cosmology:
Newtonian cosmology, cosmological redshift, Hubble’s law, microwave background, the Big Bang, expansion rate, matter and radiation domination, history of the universe.

Books Recommended:

PAPER-IV COMPUTATIONAL PHYSICS

Scientific Computing Languages:
Introduction to FORTRAN or C+ and programming techniques in practical applications to basic Physics problems.

Numerical Methods:
Euler-Newton method for solving differential equations, the trapezoidal rule for numerical quadrature and simple applications of random number, solution of integral equations, solution of nonlinear equations, linear algebra, solution of linear algebraic equations, ordinary differential equations.

Computer Graphics:
Use of computation and computer graphics to simulate the behavior of complex Physical systems, computational techniques in investigating and visualizing fundamental physics.

Scientific Packages:
Introduction to MATHIMATICA and MATLAB and their use in physics.

Books Recommended:

Numerical Analysis with C++ by Prof. Dr. Saeed Akhtar Bhatti, 4th Edition (2002).

PAPER-V CLASSICAL ELECTRODYNAMICS

Electrostatics:
Electric dipole, potential energy of a dipole in an electric field, mutual energy of two dipoles, force and couple on the dipole placed in an external electric field, multipole expansion of electric fields external field of a dielectric displacement vector, electric susceptibility and dielectric constant, boundary conditions on the field vectors, potential energy of a group of point charges, electrostatic energy of a charge distribution, energy of an electrostatic field, energy of a system of charged conductors, stress in the electrostatic field and dielectric media, coefficients of potential, capacitance and inductance.
Equation of Poisson and Laplace, applications of Laplace’s equation to problems (conductors and dielectrics) having spherical cylindrical and cartesian symmetry, electrical images (conductors and dielectrics).

Electric Current:
Nature of the current, current density and equation of continuity, Ohm’s law, steady current in media without sources of e.m.f., approach to electrostatic equilibrium.

Magnetic induction, force on current carrying conductors, Biot-Savart law, Ampere’s circuital law, the magnetic vector and scalar potentials, the magnetic field of a distant circuit.

Magnetic Properties of Matter:
Magnetisation, vectors M and H produced by magnetized materials field equation, boundary conditions on the field vectors.

Maxwell’s Equations and their Applications:
Maxwell’s equations and the generalization of the Ampere’s law, electromagnetic energy, vector and scalar potentials, gauge transformations (Lorentz gauge, coulombs guage). pressure of radiations, Green’s function for time dependent wave equation, retarded scaler and vector potentials, radiation from an oscillating dipole, plane electromagnetic wave, plane waves in a conducting and non-conducting media, linear and circurcular polarization, and superposition of waves in one dimension, boundary conditions, reflection and refraction of electromagnetic waves at a plane interface between dielectrics, waves polarization by reflection and total internal reflection, reflection from a conducting medium, covariant formulation of electrodynamics, transformation laws of electro magnetic fields, the field of a uniformly moving and accelerated electron.

Plasma Physics:
Introduction, electrical neutrality in a plasma, particle orbits and drift motion in a plasma, magnetic mirrors, the hydromagnetic equations, pinch effect, plasma oscillations and wave motion.

Lasers:
Black body radiation, Induced emission and the gain coefficient, oscillations, output coupling, power and efficiency, optical resonators, fluctuation in lasers, solid state lasers, optical coupling, laser resonators, giant pulse techniques oscillators-amplifier lasers, power and energy supplies, high repetition rate laser, ruby laser, gas laser, semi-conductor diode laser, theory of p.n. junction laser, efficiency and thresh-hold current of diode lasers, applications of lasers.

Books Recommended:

PAPER-VI NUCLEAR PHYSICS

Basic Properties of Nucleus:
Size and mass of the nucleus, nuclear spin, magnetic dipole moment, electric quadrupole moment, parity and statistics.

Detectors:
Passage of charged particles through matter, ionization chamber, proportional counter, scintillation counter, semi-conductor detector, emulsion technique, bubble chamber.

Particle Accelerators:
Linear accelerator, Van de Graff, betatron, synchrocyclotron, proton synchrotron.

Radio-Active Decay:
Theory of alpha decay, and explanation of observed phenomena—measurement of β-ray energy, the magnetic lens spectrometer, Fermi theory of β-decay, neutrino hypothesis, theory of gamma decay, multipolarity of gamma-rays, nuclear isomerism.

Nuclear Forces:
Yukawa theory, proton-proton and neutron-proton scattering, charge independence of nuclear force, isotopic spin.

Nuclear Models:
Liquid drop model, shell model, collective model.

Nuclear Reactions:
Conservation laws of nuclear reactions, Q-value of nuclear reaction, threshold energy, transmutation by photons, protons, deuterons and alpha particles, excited states of nucleus, energy levels, level width, Cross section from nuclear reactions, compound nucleus theory of nuclear reactions, limitations of compound nucleus theory, resonances, Breit-Wigner formula, direct reactions.

Neutron Physics:
Neutron sources, radioactive sources, photo neutron sources, charged particle sources, reactor as a neutron source, slow neutron detectors, fast neutron detectors, slowing down of neutron, nuclear fission, description of fission reaction, mass distribution of fission energy, average number of neutrons released, theory of fission and spontaneous fission.

Thermonuclear Reactions:
Fusion and thermonuclear process, energy released in nuclear fusion, carbon nitrogen & oxygen cycle, controlled nuclear fusion, D-D & D-T reactions.

Books Recommended:

Nuclear Physics by I. Kaplan, Addison-Wesley (1963).

OPTIONAL COURSES

OPTION-I SOLID STATE PHYSICS

Paper-VII Solid State Physics-I Marks

100

Introduction: The solid state problem, the Born-Oppenheimer approximation.

The One-Electron Approximation: Free electron gas model (FEG), applications of FEG, failure of FEG.

Effect of Non-Uniform Crystal Potential: The Bloch wave, the reciprocal lattice, the nearly free electron model (NFE) in one-dimension, the concept of energy band structure, the Fermi surface, Fermi velocity in NFE, The Bloch electron, the concept of effective mass.

Methods of Calculating Energy Band Structures: The LCAO method, the APW method, the OPW method, the concept of pseudopotentials.

Electron Interactions: The self-consistent calculations, the Hartree-Fock equation, plane-wave solution of the HF equation, problems.

Optical Processes and Excitons: Optical reflectance, Kramer-Kronig relations, example, conductivity of collisionless electron gas, electron interband transitions, excitations, Frenkel excitons Alkali halides, molecular crystals, weakly bound (Mott-Wannier) excitons, exciton condensation into electron-hole drops (EHD), Raman effect in crystals, electron spectroscopy with X-rays, energy loss of fast particles in a solid, summary.

Superconductivity: Experimental survey, occurrence of superconductivity, destruction of superconductivity by magnetic fields, Meissner effect, heat capacity, energy gap, microwave and infrared properties isotope effect, theoretical survey, thermodynamics of the superconducting transition, London equation coherence length, BCS theory of superconductivity, BCS ground state, flux quantization in a superconducting ring, duration of persistent currents, type II superconductors, Vortex stat, estimation of H_{c1} and H_{c2}, Single particle tunneling, Dc Josephson effect, Ac Josephson effect, Macroscopic quantum interference, high-temperature superconductors, critical fields and critical currents, Hall number, fullerenes, summary.

Dielectrics and Ferroelectrics: Maxwell equations, polarization, macroscopic electric field, depolarization field, E_1, local electric field at an atom, Lorentz field, E_2, field of dipoles inside cavity, E_3, dielectric constant and polarizability, electronic polarizability, structural phase transitions, ferroelectric crystals, classification of ferroelectric crystals, displacive transitions, soft optical phonons, Landau theory of the phase transition, second-order transition, first-order transition, antiferroelectricity, ferroelectric domains, piezoelectricity, ferroelasticity, optical ceramics, summary.
Nothing found
Particle Classification: Quantum numbers, leptons, hadrons, baryons, mesons, quarks.

The Fundamental Interactions: The electromagnetic coupling, the strong coupling, the weak coupling.

Symmetry Transformation and Conservation Laws: Translation in space, rotation in space, the group SU(2), systems of identical particles, parity, isospin charge conjugation, time reversal, G parity, CPT theorem.

The Electromagnetic Field: Gauge invariance and Maxwell’s equations, polarization and photon spin, angular momentum, parity and C parity of the photon.

The Klein-Gordan Equation: Non relativistic quantum mechanics, Lorentz covariance and 4 vector notation, the Klein Gordon equation, the Feynman-Stuckelberg interpretation of $E < 0$ solutions, non relativistic perturbation theory (brief review), rules for scattering amplitudes in the Feynman-Stuekelberg approach.

The Dirac Equation: Covariant form of the Dirac Equation, Dirac γ-matrices, conserved current and the adjoint equation, free particle spinors, anti particles, normalization of spinors and the completeness relations, bilinear covariants, zero mass fermion, the two-component neutrino.

Books Recommended:

Hadron Spectroscopy: Formation experiments, partial wave formalism and the optical theorem, the Breit-Wigner resonance formula, baryon resonances, phase space considerations, production experiments.

The Quark Model: The group SU(3), quarks, hadrons (baryons, mesons in quark model, heave meson spectroscopy, the quarkonium model.
The Standard Model (qualitative treatment only): Unification of weak and electromagnetic interactions Glashow-Salam-Weinberg Model.

Electrodynamics of spinless particles: An “electron” in an electromagnetic field A^μ, ”spinless” electron - muon scattering, the cross section in terms of the invariant amplitude M, the decay rate in terms of M, “spinless” electron - electron scattering, electron - positron scattering: and application of crossing, invariant variables, the origin of the propagator.

Electrodynamics of Spin $\frac{1}{2}$ Particles: An electron interacting with an electromagnetic field A^μ, Moller scattering $e^- e^- \rightarrow e^- e^-$, the process $e^- \mu^- \rightarrow e^- \mu^-$, trace theorems and properties of γ matrices, $e^- \mu^-$ scattering and the process $e^+ e^- \mu^+ \mu^-$, helicity conservation at high energies, survey of $e^- e^- \rightarrow e^- e^-, \mu^+ \mu^-$, $e^- \mu^- \rightarrow e^- \mu^-$ in the laboratory frame; kinematics relevant to the parton model, photons, polarization vectors, more on propagators, the electron propagator, the photon propagator, massive vector particles, real and virtual photons, Compton scattering $\gamma e^- \rightarrow \gamma e^-$, pair annihilation $e^+ e^- \rightarrow \gamma \gamma$, the $+$ is prescription for propagators, Eeynman rules QED.

Books Recommended:

A Modern Introduction to Particle Physics by Fayyazudding and Riazuddin, World Scientific, (1992)

OPTION-III ELECTRONIC COMMUNICATION

Paper-XI Electronic Communications-I (Theory) Marks 100

Amplitude modulation principles: Modulation, AM, FM, pulse modulation, power relationships, assignable frequency spectrum, band selection.

AM transmitters: cCircuits, high level modulation, double modulation, AM with pulse width modulation, low level modulation.

AM radio receivers and transmitters: Superheterodyne receiver, double conversion receivers, receiver circuits: IF Amplifiers, AM detectors, automatic gain control, audio amplifiers, squelch, receiver schematics, loudspeakers, AM stereo.
Frequency Modulation Principles: Modulated wave, FM radio frequency band, direct and indirect frequency modulation (Phase Modulation), carrier phase in the frequency-modulated wave. FM detectors, stereo FM, FM receiver.

Television: Scanning principles, deflection systems, video camera tubes, video picture, signal, TV receiver front end, color TV receivers.

Satellite Communication: Basic concept, earth station to earth station via satellite, service requirements, orbits, modulation and multiplexing, packetiser and depacketisers, special problems in satellite communication.

Optical communication: Introduction of Optical Fibers, Optical sources and detection optical modulation techniques

Digital Communication: Spectral analysis and filtering theory, communication channels, entropy and source coding, data compression techniques, digital radio, spectrum communication systems, mobile wireless communication system.

Communication principles in earth observation: Remote sensing, sensors for optical remote sensing, remote sensing from space, environment and agricultural applications.

Books Recommended:

Electronics for Today by Tom Duncan, Oxford University Press.

Paper-XII

**Electronic Communications-I (Laboratory) ** Marks 100

Design and study the application of operational amplifier (current to voltage converter, Instrumentation amplifier, buffer, voltage clamp, integrator, differentiator, low and high pass filter, half-wave rectifier etc.).

Design sinusoidal oscillators and function generators.

Design RF transistor oscillator, Convert it into a transmitter. detect the transmitted wave by a radio receiver (both for AM & FM).

Circuit study and fault finding of audio-oscillator/ commercial radio and T.V.

Design and construct an analog to digital and digital to analog converters using IC’s.
Design and study of decoder, encoder, multiplexer and demultiplexer circuits and compare the input output waveforms.
To construct and understand an operation of arithmetic logic unit and study of different arithmetic logic operations.
Design and construct active filters and study their frequency response.
Design and construct an infrared transmitter detected the transmitted wave.
Design and construct a ultrasonic transmitter and receiver.
Using microprocessor based trainer's and study the microwave and optical communication and control the information from host personal computer.

OPTION-IV

ADVANCED ELECTRONICS

Paper-XIII Digital Electronics, Microprocessors and Microcomputer Systems-I (Theory)

Marks 100

Operational amplifiers: Ideal operational amplifier, differential amplifier, emitter coupled differential amplifier, offset error and voltages/currents, operational amplifier parameters and applications, frequency response of operational amplifiers.

Sequential Logic; Flip-flops, latches, JK, T and D flip-flops, Master-slave flip-flops.
Register and Counters; Shift registers, ripple and Synchronous binary counters. Analog to digital conversion and digital to analog conversion, conversion errors.

Memory and programmable logic: ROM and RAM, memory decoding, error detection and correction, PLD, PLA and PAL.

Control Logic Design: Microoperations, shifter unit, micriprogrammed control, ALU and control of microprocessor unit.

CPU addressing modes: Address field and modes, stack organization, data transfer instructions, data manipulation instructions, program interrupt. Input-output interface, design of a CPU, pipeline processing.

Electronic Devices (operation and characteristics): Tunnel and IMPATT diodes, Quantum-effect devices, MESFET and MODFET and Hot-Electron devices. LED, Gunn, and Laser diodes, photodetector, UJT and the basic sweep circuit, circuit to generate triggered sweep.

Radio communication: Production and propagation of radio waves, direct waves, ground reflected, surface wave and space waves, formation of ionospheric layer and their variations, skip distance.

Microwaves: Microwave spectrum and radar bands, properties of microwaves, production of microwave (klystron, magnetron, traveling wave oscillator), gunn oscillator, measurement of microwave power, radar system.

Books Recommended:

Introduction to Digital Computer Technology by Mashelsky (Wiley),
Pulse Digital and Switching Wave forms by Millman and Taub (McGraw-Hill)
Microwave Principles, by Reich-Skalmik-Ordung-Kranss.
Microwave Measurements by Gingston.
Electronic and Radio Engineering by F.E. Terman McGraw-Hill.
Integrated Electronics by Millman and Halkias.
Computer Engineering, Hardware design by M. Morris Mano, Prentice Hall (1988)

Paper-XIV Digital Electronics, Microelectronics and Microcomputer System-II (Lab) Marks 100

Design of a UJT relaxation oscillator of a variable frequency, measure frequency and amplitude of the output.
Design RF transistor oscillator, Convert it into a transmitter. detect the transmitted wave by a radio receiver (both for AM & FM).
Design an inverting and non-inverting D.C. amplifier, measurement of parameters of a given IC operational amplifier.
Design and study the application of operational amplifier (current to voltage converter, Instrumentation amplifier, buffer, voltage clamp, integrator, differentiator, low and high pass filter, half-wave rectifier etc.).
Design a fixed and self bias transistor binary and triggering of binary, using IC’s construct and study RS, JK (Master slave), T and D flip-flops.
Design and study of a half and full adder with different Boolean expression using IC’s. Synchronous and asynchronous BCD counters, Memory shift register with IC’s. Frequency counter and optional digital clock.
Circuit study and fault finding of stabilized power supply, Audio-oscillator/ CRO, multimeter/commercial radio and T.V.
Design and construct an analog to digital and digital to analog converters using IC’s. Design and study of decoder, encoder, multiplexer and demultiplexer circuits and compare the input output waveforms.
To construct and understand an operation of arithmetic logic unit and study of different arithmetic logic operations.
To construct and study of data storage and retrieval using semiconductor memory and understand the process of fetching an instruction and its operand with ALU.
Using microprocessor trainer’s and study of microprocessor application working from host personal computer.
Synoptic Meteorology: Composition & structure of atmosphere, ICAO standard atmosphere, Weather elements, Air mass classification, Thermodynamic characteristics, General Circulation.

Atmospheric thermodynamics, First law of thermodynamics and enthalpy; adiabatic processes and potential temperature. The second law of thermodynamics; entropy; thermodynamics of water vapour and moist air; thermodynamic properties of the water substance; phase transition of water; water vapour and most air; Clausius-Clapeyron’s equation; Aerological diagrams; selection of coordinates; choice of diagram; analysis of tephigram.

Methods of Surface Observations & Codes: Reading of routine observations, barometric corrections & reduction, reading, setting & maintenance of thermometers, surface codes, Aeronautical codes (Speci & Metar)

Dynamic Meteorology: Circulation & vorticity, Stokes theorem, Vorticity equation, Rossby waves.
Meteorological Instruments: Meteorological instruments used in thermometry, barometry, hygrometry, rainfall & snowfall measurement, wind measurement, cloud measurement, evaporation measurement, visibility measurement, sunshine measurement. introduction to weather radar systems, introduction to radiosonde equipment.
Climatology: Climatic elements; principles of climate classification; world climate classification; climates of Asia; climates of the sub-continent; the climate of Pakistan. Climate change: Meteorological factors affecting climate; greenhouse gases; El-Nino, La-Nina. Tropical Meteorology: Tropical general circulation, Diurnal variations of meteorological elements in the tropics, A survey of low-latitude weather disturbances; easterly waves; intertropical convergence zone. Monsoons, Tropical cyclones, structure and formation of cyclones.
Aviation Meteorology: meteorological aspects of flight planning, Aviation hazards and their association with synoptic patterns, aircraft icing, turbulence, fog, thunderstorms, dust storms, low-level vertical wind shear, Jetstream formation & structure.

Books Recommended:

The students are required to do the following experiments:
Mean Sea Level Surface Map Analysis, frontal analysis.
Upper air map analysis, streamline-isotach analysis.
Analysis of polar & geostationary satellite images.
Recording of observations, wind-vane, anemometer, anemograph, hyetograph.
Tephigram analysis.
Atmospheric (barometric & aneroid) pressure, conversion of station level to mean sea level pressure.
Jetstream analysis.
Interpretation of weather radar rainfall & cloud analysis.

OPTION-VI MATERIALS SCIENCE

Paper-XVI Materials Science-I (Theory) Marks
100

Introduction to materials; properties of the materials; Types of Materials (i) metallic materials & (ii) Non metallic materials; Selection of Materials; Bonds in Solid; Ionic Bonding, Covalent Bonding, Metallic Bonding, Van der Waals Bonding, Secondary Bonding, Mix bonding, Effect of Bond type on structure and properties such as density, stability, melting point, stiffness and electrical properties.

Crystallography or crystal structure; The Space of Lattice, Crystal systems and Brass Lattice, Principal Metallic Crystal Structures, Atom Position in Cubic Unit Cells, Directions in Cubic Unit cells. Miller Indices for Crystallographic Planes in Cubic Unit Cells, Crystallographic Planes and directions in Hexagonal Unit Cells, Comparison of FCC, HCP, and BCC Crystal structures, Volume, Planar, and Linear Density Unit Cell Calculations, Polymorphism or Allotropy, Crystal Structure Analysis.

Corrosion: Definition, Types, its determination and protection.

Books Recommended:

Paper-XVII Materials Science-II (Laboratory) Marks

100

Note: The students are required to do the following experiments:

- Classification of Materials, To classify the given specimen of materials into Metallic materials and non-metallic materials
 Metals and alloys
 Ferrous and Non-Ferrous metals
 Ferrous and Non-Ferrous alloys
- Study of furnace (Heat-Treatment Furnace) and a thermocouple pyrometer.
- Study/understanding and working of a Metallurgical Microscope.
- Study/understanding and working of a Metallurgical Microscope.
- Study the microstructure of a given metals/alloys.
 to determine the hardness of a given metallic material by
 a. Vicker’s Hardness testing Machine.
 b. Brinell Hardness Testing Machine
- Study the relationship of Vicker’s, Brinell and Rockwell hardness of given material.
- To study the Mechanical Properties of a given sample.
- To perform mechanical testing of polyethylene.
- To determine heat deflection temperature of given sample of polymer (Acrylic).
- To perform thermogravimetric analysis of given polymeric materials & determine decomposition temperature.
- To fabricate ceramic material by slip casting technique.
- To determine the thermal shock resistance of the given material.
- To study the thermal changes occurring in the given clays on heating with differential thermal analysis. (for refractory spalling index).
- To determine the % age loss of moisture of the given clay.
- To calculate moisture contents in the given sample of ceramics material.
- To determine the % age water absorption in the given sample of refractory material.
- To determine the loss in ignition in the given sample of clay.
- To determine the porosity and density of a given refractory material.
To find out the corrosion rate of given specimen by loss in weight method.
To protect metals from corrosion - electroplating & colouring
To fabricate fiber-glass reinforced composite material by using hand-lay-up technique.
To determine and compare the specific heats of metallic and non-metallic materials.
To determine the plasticity of the given of clay.
To determine the effect on plasticity of the given sample of clay by adding (non plastic) impurity SiO₂
To measure the green strength of the given ceramic substance.
To determine the viscosity of a given sample of glass by penetrating method.
To study the process of enameling.
To study the process of glazing.
To determine the thermal conductivity of the given sample of refractory material.
To determine the thermal expansion coefficient of the given sample.
To determine the crushing strength of the given material.
Determine the %age linear shrinkage in the given sample of clay.
Determine the green compression strength of sample of clay.
Determine the green compression strength of sample of clay with the addition of impurity.
To apply the raw glaze and frit glaze on a ceramics body.

OPTION-VII MEDICAL PHYSICS / RADIATION PHYSICS

Paper-XVIII Medical Physics / Radiation Physics-I (Theory) Marks
100

Radiotherapy: Introduction, The development of radiotherapy, Radiotherapeutic aims, External beam therapy, Brachytherapy, Unsealed source therapy, Requirements for accuracy and precision, Quality assurance, The role of medical physics.

Medical Imaging: Diagnostic X-rays, Production of X-rays, Absorption of x-ray to other planes, Partial volume effect, Artifacts, Contrast agents in conventional radiography and CT, Diagnostic Ultrasound, Doppler effect, Radionuclide imaging, positron emission tomography (PET), Magnetic resonance imaging (MRI), Contrast agents for MRI.

Radiation Dosimetry: History of Absorbed Dose, Stochastic and Non-stochastic quantities, Units for Absorbed Dose, Absorbed Dose Calorimeters, Exposure and its measurements. The free-air chamber, Exposure measurement with calibrated cavity chamber. The concept of Kerma, absorbed Dose in air, Absorbed dose in other Materials, Factors converting Exposure to Absorbed Dose to wake, High energy calibrations, The Bragg-Gray Cavity theory.
Methods of Dosimetry: Calorimeters, Ionisation Chambers, chemical Dosimetry, Thermoluminescence Dosimetry (TLD), Photographic Dosimeter, Scintillation Detectors, Other Dosimetric Systems.

Health Physics: Cardinal principles of radiation protection, Minimize time, Maximize distance, Maximize shielding, Time, Distance and shielding, Maximum permissible dose, whole-body occupational exposure, whole-body non-occupational exposure, partial body occupational exposure, X-ray and pregnancy, Basic radiation safety criteria, effective dose-equivalent, allowable limit on intake (ALI), inhaled radioactivity, derived air concentration, Gastrointestinal tract, Basis of radiation safety regulations.

Books Recommended:

Paper-XIX Medical Physics / Diagnostic Techniques (Laboratory)

Students are required to study the functioning and data analysis obtained from various machines used in nuclear medicine and medical physics. The students have to work in some hospitals where these machines are available. The list of these machines are as under:

X-ray Machine
Electro Cardiograph
Gamma Camera
Mammography Machine
Various Machines used in Radiotherapy

The students have also to study the handling of radioactive material in different hospitals.

OPTION-VIII BIOPHYSICS

Paper-XX Biophysics-I (Theory) Marks
100

Nature and scope of biophysics; Molecular Structure of Biological Systems; Chemical binding, energies and bonds; Energy transfer and transformation in photosynthesis and biological membranes; Dynamics of biological systems; Fundamental concepts of thermodynamics, aqueous and ionic equilibrium of living cells; Other biotransport processes; Long and short distance transports; Viscoelastic properties of biomaterials.
The biomechanics of human body, blood circulation, swimming and flying; Physical factors of the environment; Biophysics of hearing, ifra and ultrasounds; Biomagnetism: Magnetic effects on humans and other organisms; Ionizing radiations; Radiobiological reactions; Vision, biosensing and biomechanics; Models approaches for propagation, ecological interactions, growth, differentiation evolution and neural process.

Books Recommended:

Paper-XXI
Biophysics-II (Laboratory)
Marks
100

The students are required to perform the following experiments:

- Study of transport processes in plants
- Study of membrane potential and redox
- Study of germination and growth biology magnetized and irradiated seeds
- Monitoring studies of body temperature in organisms under stress
- Determination of osmotic potential, pressure potential and water potential in plants
- Ion uptake and balance of charge measurements
- Study of biosensing and bioindication
- Study of threshold of hearing, ECG and blood pressure monitoring in humans

OPTION-IX
Laser Physics

Paper-XXII
Laser Physics-I (Theory)
Marks
100

Conditions for Producing a Laser: Population Inversions, Gain and gain Saturation.

Laser Oscillation above Threshold: Laser Gain Saturation, Optimization of Laser Output Power, Laser Amplifiers.

Population Inversion Requirements: Inversions and Two-level systems, Steady-state inversions in Three- and Four-level Systems, Transient Population Inversions, Processes that destroy Inversions.

Laser Pumping Requirements and Techniques: Pumping Threshold Requirements, Pumping Pathways, Optical Pumping and Particle pumping.

Laser Cavity Resonators: Longitudinal and Transverse Laser Cavity Modes, Properties of Laser Modes

Stable Laser Resonators and Gaussian Beams: Curved Mirror Cavities, Properties of Gaussian Beams, Properties of Real laser Beams, Unstable Resonators, Gain-switching and Mode-locking, Pulse-shortening Techniques, Ring Lasers.

Laser Systems: Atomic Gas Lasers (He-Ne Laser, Argon Gas Laser, He-Cd Laser, Copper Vapour Laser), Molecular Gas Lasers (CO₂ Laser, Excimer laser, N₂ Laser, Far-infrared Gas Lasers,

Frequency Multiplication of laser Beams: Introduction.

Books Recommended:

Note: The students are required to perform 8 experiments out of the following list:

The students opting for this course must learn about Laser Safety, particularly:

Eye Damage mechanisms

Laser safety classification

1. Geometrical Optics, Polarization, Interference, and Coherence of Laser Beam
2. Optical Detector Physics
3. Fundamentals of Laser Operation, Gaussian Beams and Laser Modes
4. Semiconductor Diode Lasers
5. Optical Spectrometers
6. Principles of optical waveguides and Rayleigh scattering
7. Propagation of light through fiber optic, modulation, fabrication of optical fiber passive components, light sources and detection of light from a fiber, designing and assembling of optical communication system
9. Holography and Phase Conjugation
10. Electro- and Magneto-Optics
11. Doppler-Free Spectroscopy
12. Diffraction and Fourier Optics

OPTION-X THESIS

Marks 200