GC UNIVERSITY, FAISALABAD

Scheme of Studies
Master of Science in Chemistry

04 Semesters / 2 years Degree Program
for the year 2015 and onward

Department of Chemistry
Scheme of Studies M Sc Chemistry

M.Sc. Chemistry

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM-553</td>
<td>Physical Chemistry – I</td>
<td>48 – 1</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Organic Chemistry – I</td>
<td>48 – 4</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Inorganic Chemistry – I</td>
<td>48 – 4</td>
</tr>
<tr>
<td>MTH-371</td>
<td>Mathematics for Chemists</td>
<td>24 – 2</td>
</tr>
<tr>
<td>CHM-557</td>
<td>Environmental Chemistry</td>
<td>36 – 4</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Analytical Chemistry I</td>
<td>36 – 4</td>
</tr>
<tr>
<td>CHM-501</td>
<td>Biochemistry – I</td>
<td>36 – 0</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM-553</td>
<td>Physical Chemistry – II</td>
<td>48 – 1</td>
</tr>
<tr>
<td>CHM-554</td>
<td>Organic Chemistry – II</td>
<td>48 – 4</td>
</tr>
<tr>
<td>CHM-558</td>
<td>Inorganic Chemistry – II</td>
<td>48 – 4</td>
</tr>
<tr>
<td>CHM-556</td>
<td>Analytical Chemistry – II</td>
<td>36 – 4</td>
</tr>
<tr>
<td>CHM-500</td>
<td>Biochemistry – II</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-501</td>
<td>Introduction to Spectroscopy</td>
<td>36 – 2</td>
</tr>
</tbody>
</table>

Semester 3

The students have to adopt one specialization set from the following:

Specialization in Organic Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-501</td>
<td>English for Employment (EFE)</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-551</td>
<td>Spectroscopic Organic Techniques</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Rearrangements and Pericyclic Reactions</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Pharmaceutical Chemistry</td>
<td>36 – 3</td>
</tr>
<tr>
<td>CHM-557</td>
<td>Organic Chemistry Practical</td>
<td>20 – 0</td>
</tr>
</tbody>
</table>

Specialization in Analytical Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-501</td>
<td>English for Employment (EFE)</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Electro Analytical Techniques</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-551</td>
<td>Advanced Separation Techniques</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Atomic Spectroscopy</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-551</td>
<td>Analytical Chemistry Practical</td>
<td>20 – 0</td>
</tr>
</tbody>
</table>

Specialization in Inorganic Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-501</td>
<td>English for Employment (EFE)</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Main Groups Organometallic and Organic Reagents</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Spectroscopic Methods of Analysis</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Metal Cluster Compounds</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Inorganic Chemistry Practical</td>
<td>20 – 0</td>
</tr>
</tbody>
</table>

Specialization in Physical Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-501</td>
<td>English for Employment (EFE)</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-557</td>
<td>Kinetics of Complex Reactions</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-557</td>
<td>Nuclear and Radiation Chemistry</td>
<td>36 – 0</td>
</tr>
</tbody>
</table>

Specialization in Inorganic Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-501</td>
<td>English for Employment (EFE)</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Electrophilic Aromatic Compounds</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-553</td>
<td>Group Theory and Solutions</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-559</td>
<td>Quantum and Statistical Mechanics</td>
<td>36 – 0</td>
</tr>
</tbody>
</table>

Specialization in Biochemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM-552</td>
<td>Advanced Spectroscopy</td>
<td>36 – 0</td>
</tr>
<tr>
<td>CHM-554</td>
<td>Electrochemical Aspects of Solutions</td>
<td>36 – 0</td>
</tr>
</tbody>
</table>

Note: For research students (Thesis will opt only two courses & other students will study four courses along with two compulsory courses i.e. STA-259 (Introduction to Statistical Theory) and CHM-479 (Seminar).
M.Sc Chemistry

Semester 1

CHM-551 Physical Chemistry-I 4(3-1)

Kinetic Theory of Gases

Chemical Thermodynamics
Relation of entropy and energy with equilibrium constant and their dependence on temperature. Clausius-Clapeyron equation. Chemical potential. Partial molar quantities.

Chemical Kinetics

CHM-551 Practicals
- Equilibrium constant of the KI + I$_2$ = KI$_3$ reaction
- Kinetics of saponification of ethyl acetate
- Acid catalyzed hydrolysis of sucrose
- Study of the adsorption isotherms of acetic acid charcoal system
- Study of the charge transfer complex formation between iodine and benzene
- Determination of activation energy for the acid catalyzed hydrolysis of ethyl acetate
- Determination of partial molar volumes
- Determination of partition coefficient of a substance in two immiscible liquids.

Books Recommended:
Acids and Bases
Concepts of acids and bases; scale of acidity and basicity; pka values; predicting acids/basis reactions from pKa values; the effect of structure on the strengths of acids and bases, field effects, resonance effects, steric effects, hydrogen bonding effects and hybridization effects, the effect of the medium on the strengths of acids and bases; the Hammett and Taft's equations, applications and limitations.

Stereochemistry
Introduction; optical isomerism; optical activity, chirality, symmetry elements and optical inactivity, relative and absolute configuration, R, S notation, methods of determining configuration. Racemic mixtures and their resolution, asymmetric synthesis, optical activity in biphenyls, alkenes and spiro compounds, stereospecific and stereoselective reactions; Geometrical isomerism. Determination of configuration of geometrical isomers, Z, E, conventions cis-and trans- isomerism in cyclic systems; Conformational isomerism conformational analysis of monosubstituted cyclohexanes, disubstituted cyclohexanes and decalin systems.

Oxidation Reduction Reactions:
a) Oxidation: Introduction. Oxidation of saturated, olefinic and aromatic compounds. System containing oxygen and nitrogen compounds.

Purification Techniques: Fractional distillation, fractional distillation under reduced pressure and fractional crystallization

Mixture Analysis: Analysis of two component mixture.

Books Recommended:

1. **BONDING MODELS FOR NON TRANSITION ELEMENTS**
 (a) Covalent bond. VSEPR model followed by VBT for prediction of geometries of molecules and ions containing sigma bonds as well as pi bonds. MOT for homonuclear and heteronuclear diatomic molecules.
 (b) Metallic bond. Band theory to describe conductors, insulators and semiconductors.
 (c) 3 center 4 electrons bond, 3 center 2 electrons bond, bent bond, H bonding.

2. **CHEMISTRY OF COORDINATION COMPOUNDS**

3. **LANTHANIDES AND ACTINIDES**
 Historical survey, occurrence, separation and preparation. Oxidation states, magnetic properties of Lanthanides and Actinides. Lanthanides contraction. Applications and uses of elements and their compounds.

CHM-555

Practicals

1. Separation of cations by paper chromatography: (Pb$^{2+}$, Cd$^{2+}$, Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Ag$^{+}$)
2. Preparation And Characterization Of Complex Compounds:
 (i) Sodium Cobaltinitrate (ii)Potassium trioxalato aluminate (iii) Ammonium Nicke
 (II) Sulphate (iv) Hexa aqua Chromium (III) chloride).
3. Complexometric Titration (Any four) Cu$^{2+}$/Ni$^{2+}$/Ca$^{2+}$/Ba$^{2+}$/Au$^{2+}$/Pb$^{2+}$/Cd$^{2+}$
 /Zn$^{2+}$/Ni$^{2+}$/Mg$^{2+}$/Ca$^{2+}$/Zn$^{2+}$

Books Recommended:

Scheme of Studies M Sc Chemistry

CHM-557 Environmental Chemistry 3(3-0)

Recommended Books:

CHM-559 Analytical Chemistry-I 3(3-0)

Chemical Analysis and Data Handling
Accuracy of analytical processes such as sampling, weighing, volume measurements, precipitation, washing, filtration and ignition. Recent developments in the sampling techniques, statistical analysis; random and systematic errors, rounding off the data, arithmetic mean, median, mode, standard deviation, relative standard deviation, student t-test, F-test etc., quality control and quality assurance constructing and interpreting quality control plots. The use of computer in data handling.

Ionic Equilibria in Solutions

Separation Techniques
Solvent extraction Principle, factors affecting the extraction systems, Distribution la, coefficient and ratio, multiple batch extraction, practical applications in chemical analysis.
Chromatographic methods General theory of chromatography, classification of chromatographic methods, column, paper, thin-layer, and ion-exchange chromatography and their applications.

Books Recommended:
CHM-561 Biochemistry-I 3(3-0)

Introduction to biochemistry, scope of biochemistry, living systems, evolution and rise of living systems, important elements of living systems including carbon, nitrogen, phosphorus, hydrogen etc. foundations of biochemistry, the physical, cellular, chemical, genetic and evolutionary foundations of life, nature of organic matter, isomerism, general reactions of different functional groups, biologically important organic compounds, carbohydrates, proteins, lipids and nucleic acids

Books Recommended:

Scheme of Studies M Sc Chemistry

Semester 2

CHM-552 Physical Chemistry-II 4(3-1)

Electrochemistry

Quantum Chemistry and Spectroscopy

Symmetry Elements

CHM-552 Practicals
• Determination of molecular weight of a polymer by viscosity method
• Precipitation value of electrolytes
• Measurement of IR spectra of simple compound and their interpretation
• Measurement of cyclic voltammogram of an organic compound and its interpretation
• Determination of dipole moment of an organic liquid
• Determination of percentage composition of KMnO₄ / K₂Cr₂O₇ in a given solution by spectroscopy.
• Stoichiometry of a complex in solution by jobs method
• Evaluation of pKa value of indicator by spectrometric method

Books Recommended:
CHM-554 Organic Chemistry-II 4(3-1)

Aliphatic nucleophilic substitution and Elimination reactions
Aliphatic nucleophilic substitution reactions Mechanisms and study of SN1, SN2, SN1, SN2, mechanism; neighbouring group participationintra molecular displacement by neighbouring oxygen, nitrogen, sulphur and halogen; The effects of the substrate structure, entering group, leaving group and reaction medium on the mechanisms and rates of substitution reactions.

Elimination ReactionsMechanisms study of E1, E1cB and E2 mechanisms; attacking base, leaving group and the reaction medium on the rates and mechanisms of elimination reactions; competition between elimination andsubstitution reactions.

Aromatic Substitution reactions
Electrophilic substitution Aromaticity; mechanisms of substitution; orientation sulfonation, Friedel-Crafts reactions, diazo-coupling, formylation and carboxylation.
Nucleophilic substitutionMechanismsStudy of SNAr, SN1 and benzyne mechanisms; The effects of substrate structure, leaving group and the attacking nucleophile on the rates of substitution reactions.

Named Organic Reactions
Cannizzaro reaction, Perkin reaction, Michael reaction, Claisen-Schmidt reaction, Darzens Glycidic Ester reaction, Stobbe reaction, Mannich reaction, Wittig reaction, Ene reaction and Reformatsky reaction, Diels-Alder reaction.

CHM-554 Practical
Organic Synthesis at least four experiments involving two step synthesis
Estimation of Amide and Carboxyl groups, Phenol and other functional groups.
Determination of Saponification value and acid value in oil.

Books Recommended:
1. **Chemistry of Non-Aqueous Solvents:**
Classification of solvents. Type of reactions in non-aqueous solvents. Physical and chemical properties of solvents. Study of reactions in liquid NH₃, HF, SO₂, BrF₃, CH₃COOH and HCN. Reactions in molten salt system.

2. **Pi-Acceptor Ligands:**

3. **Kinetics and mechanism of inorganic reactions:**

CHM- 556 Practicals

1. **Estimation Of Anions (Any four)**
 Chloride/Phospate; Chloride/Nitrate; Bromide/Nitrate; Iodide/Nitrate; Borate/Acetate; Oxalate/Chloride; Sulphate/Phosphate

2. **KIO₃ Titrations (Any two)**

3. **Gravimetric Estimations:**
 Estimations of Ba²⁺; Oxalate ions.

Books Recommended:

CHM-558 Analytical Chemistry II 3(3-0)
Properties of Light and its interaction with matter, relation between frequency, velocity and wave number, Lambert-Beer’s Law and its limitations, Single and double beam spectrophotometers, sources of light (lamp and lasers), monochromators, photomultiplier tubes, detectors, diode array and charged coupled devices, applications of UV-Vis spectrophotometer in natural product research, pharmaceutical industry, separation process, enzyme essay study, clinical studies, microbiology. Applications of IR, NMR and Mass spectrophotometer in research & development and quality control process.

Reference Books:

CHM-560 Biochemistry-II 3(3-0)

Physical aspects of Biochemistry

Digestion Absorption and Utilization:
Carbohydrates, Lipids proteins nucleic acids, vitamins, minerals.

Enzymes

Books Recommended:
CHM-562 Introductory Spectroscopy 2(2-0)

Spectroscopy:
Introduction to principle, instrumentation and application of Electronic (UV / Visible) Atomic (Emission /Absorption), Molecular (Infrared) and Nuclear Magnetic Spectroscopy.

Recommended Books:

Semester 3

Specialization in Organic Chemistry

CHM-651 Spectroscopic Organic Techniques 3(3 – 0)

(a) Introduction

(b) Ultraviolet/Visible Spectroscopy:

(c) Infrared Spectroscopy:
Introduction, Vibrational modes and absorption frequencies, Hooks Law, Instrumentation and sample handling, Interpretation of Infrared spectra, Characteristic absorptions frequencies of some common functional groups, Applications of Infrared spectroscopy.

(d) Nuclear Magnetic Resonance:
Introduction, Spin flipping Nuclear Precession and absorption of electromagnetic radiation, Spin relaxation, The Chemical shift and integration curve, Molecular structure and chemical shifts, Instrumentation and Sample handling, Spin splitting and coupling constants. Interpretation of NMR spectra.

(e) Mass spectrometry:
Introduction, Basic Principle, Instrumentation (theory and operation) The mass spectrum, Modes of Fragmentation of various organic molecules. Applications of mass spectrometry determination of molecular weight, molecular formula and molecular structure. Interpretation of mass spectra.

Recommended Books:
CHM-653 Rearrangements and Pericyclic Reactions 3(3 – 0)

Pericyclic Reactions
Conrotatory and Disrotatory motion of orbital, electrocyclic reactions, thermal cyclization, Photochemical cyclization, Hofman rule, Fukui Theory of Frontier orbitals. Introduction to cycloaddition reactions. Suprafacial and Antanafacial addition woodmard Hofman Rule. Frontier theory and mobius huckle theory for (2 + 2) and (2 + 4) thermal and photochemical cycloaddition reaction.

Recommended Books:

CHM-655 Pharmaceutical Chemistry 3(3 – 0)

Alkolids
Introduction, occurrence, function of Alkolids in plants, Classification, Nomenclature, Pharmaceutical Applications, Isolation, Qualitative Test and General Properties, General Method of Structure Determination. Morphines, Nicotine, Quinine.

Drugs
Introduction, Sources, Route of administration, Metabolites and mechanism of drug action. Sulfonamide, Antipyretics, Analgesic, Barbiturates, Antibiotics, their general synthesis and structure activity relationship.

Recommended Books:

CHM-657 Organic Chemistry Practicals 2(0-2)

Synthesis of Organic Compounds:
Synthesis of the following organic compounds involving more than two steps using various synthetic methods.
Anthranilic Acid. Benzilic acid, p-nitro aniline, Phenacetin, Acridon.
Analysis of three organic Compounds.

Specialization in Analytical Chemistry

CHM-659 Electroanalytical Techniques 3(3-0)

potentiometry:
Electrode potential, Nernst equation and its use for measuring half-cell potential, different kinds of electrodes including glass and calomel electrodes, working of potentiometer and its application including pH measurements, ion selective electrode systems, ion exchange membrane electrode, solid state membrane electrodes and bio-membrane electrodes, potentiometric titrations.

Coulometry and Electrogravimetry:
Basic electrochemistry, principle, instrumentation of coulometry, principle, instrumentation of electrogravimetry, consequences of electrogravimetry, Ohmic drop, activation over potential, concentration and gas polarization, basic difference and merits/demerits of coulometry and electrogravimetry.

Voltammetry and Polarography:
Basic principle, voltammogram, polarizable and non-polarizable electrodes, solid electrodes, their scope and limitations, cyclic voltammetry, anodic stripping voltammetry, voltammetric equation, basic concept of polarography and interpretation of various polarographic curves, measurement of decomposition potential, diffusion and limiting currents, derivation of Ilkovic equation, logarithmic analysis of polarographic wave, advantages and limitation of dropping mercury electrode.

Reference Books:
CHM-661 Advanced Separation Techniques 3(3-0)

Chromatography:
Classification of chromatographic techniques, chromatographic processes, rate theory of chromatography, Van-Deemter equation and its significance in evaluating column efficiency.

Gas Liquid Chromatography:
General principle, sample preparation/derivatization, separation process and instrumental aspects and its applications.

High Performance Liquid Chromatography:
General principle, sample preparation, separation process (normal phase and reverse phase separation), instrumentation, method development and applications.

Capillary Electrophoresis (CE):
Introduction of Electrophoresis, Theory and principle of CE, mobility, electro-osmotic flow separation by CE, instrumentation, modes of operation, applications.

Reference Books:

CHM-663 Atomic Spectroscopy 3(3-0)

Atomic Absorption Spectrophotometry:
principle of atomic absorption spectrophotometry, concentration dependence of absorption, quantitative methodology, instrumentation for atomic absorption spectrophotometry, radiation sources, atomizers, flames, graphite furnaces and electrochemical atomizers, wavelength selectors, detectors, handling background absorption, interferences in atomic absorption spectrophotometry, sample handling in atomic absorption spectrophotometry, preparation of the sample, use of organic solvents, microwave, digestion, sample introduction methods, applications of atomic absorption spectrophotometry.

Atomic Emission Spectrophotometry:
introduction, principle of atomic emission spectrometry, atomic emission spectrometry using plasma sources, plasma and its characteristics, inductively plasma, direct current plasma, microwave induced plasma, choice of argon as plasma gas, instrumentation for ICP-MS.

Atomic Fluorescence Spectrometry:
Origin of atomic fluorescence, atomic fluorescence spectrum, types of atomic fluorescence transitions, principle of atomic fluorescence spectrometry, fluorescence intensity and analyte concentration, instrumentation for atomic fluorescence
Scheme of Studies M Sc Chemistry

spectrometry, applications of atomic absorption spectrophotometry, interferences, merits and limitations.

Reference Books:

CHM-665 Analytical Chemistry Practicals 2(0 - 2)

Practicals
The experiments may be set making use of the following instruments depending upon their availability, special experiments may also be designed for which a specimen list of instruments is given below. For the innovative designing of experiments the Journal of Chemical Education may be consulted.

INSTRUMENTS
UV/Visible spectrophotometers
Flame photometers
pH-meters
Conductivity bridge
Gas chromatography
HPLC chromatography
Electro gravimetric apparatus
Atomic absorption spectrophotometer
Infrared spectrophotometers

Experiments
Determination of iron in soil by spectrophotometry.
Spectrophotometric determination of molybdate ion.
Separation of dyes using column/paper/thin layer chromatography.
Separation of sugars using paper chromatography.
Separation of amino acids using paper/thin layer chromatography.
Separation of hydrocarbons using GC/HPLC.
Determination of iron in foods products spectrophotometrically.
Determination of phosphate content in commercial fertilizers by spectrophotometry.
Determination of nickel in vegetable ghee by spectrophotometry involving solvent extraction.
Identification and spectrophotometric determination of aspirin, phenacetine and caffeine in pharmaceutical samples.
IR analysis and identification of human body stones
Mass spectrometry of mineral oil samples.
To determine pKa values for the given samples of weak acids by potentiometric method.
To determine the quality parameters i.e. pH, conductance and concentration of anions and cations.
To determine Ni (II) in steel using DMG reagent by spectrophotometric method.
To determine vitamin-C concentration in the given samples.
To determine calcium and zinc in milk by atomic absorption spectrophotometer.
To determine lead in sewage sludge by atomic absorption spectrophotometer.
To determine Mn and Cr in stainless steel spectrophotometrically.
To record and characterization of IR spectra of at least 1 organic compounds.

Specialization in Biochemistry

CHM-667 Biological Metabolism 3(3-0)

Dietary carbohydrates, Glycolysis, biomedical significance, Fermentation, feeder pathway and fate of pyruvate, Citric acid cycle, Gluconeogenesis, Cori cycle, Glycogenesis, Glycogenolysis, HMP shunt, Uronic acid pathway, Glyoxylate pathway, photosynthesis, General aspects of amino acids metabolism, urea cycle Breakdown and synthesis of individual amino acids, protein degradation, transport of fatty acids to mitochondria, β and ω-oxidation of fatty acids, ketone bodies biosynthesis of fatty acids, Triacylglycerides, ecosanoids, prostaglandins, cholesterol, steroids, concept of central dogma.

Recommended Books:

CHM-669 Human Physiology 3(3-0)

Components and physiology of body systems, structure and functions of liver; with special reference to detoxification functions, circulatory system, blood composition, blood pressure, blood groups, blood coagulation and blood clotting factor, blood buffers, respiratory system, structure and functions of lungs, transport of oxygen and carbon dioxide in blood, acid base balance, excretory system, kidney; structure and functions, water and electrolyte balance, nervous system, hormones, introduction, classification, chemical nature, general mechanism of action, regulation, secretion, mode of action and biological functions of thyroid, parathyroid, pituitary, adrenal, gonadal and pancreatic hormones, structure and functions of muscle

Recommended Books:

CHM-671 Biochemistry of Nucleic Acids 3(3-0)

Introduction, Nucleus, Genome organization, Nucleic acids and their importance, Types, chemical composition, Sugars and bases: purines and pyridines, Unusual bases and their functions, Nucleosides, nucleotides and their derivatives, Nucleotide coenzymes, synthesis and degradation of nucleotides, Phosphodiester bond, Oligonucleotide, Polynucleotide, Double helical structure, Unusual structure of DNA, Structures of RNA, Physical and chemical properties of nucleic acids, DNA denaturation and hybridization, DNA sequencing, Chemical synthesis of DNA, gene and genome, Differences in prokaryotic and eukaryotic genes, Histones, Nucleosome, DNA supercoiling, Structure of chromosome, Genetic information,

Recommended Books:

CHM-673 Biochemistry Practicals 2(0 - 2)

General phenomenon: Solution preparation, centrifugation, precipitation, chromatography, spectrophotometry, lyophilization, electrophoresis, proximate analysis

Carbohydrates: qualitative analysis of known carbohydrates, Extraction of starch and glycogen,

Proteins: Qualitative tests of amino acids and proteins, quantitative determination of proteins in serum/plasma and urine

Lipids: Extraction of lipids and oils, lipid unsaturation test, Saponification and emulsification,

Nucleic acids: Isolation of DNA from tissues, extraction of genomic and plasmid DNA, Digestion of DNA with restriction enzymes, Separation of DNA fragments by agarose and polyacrylamide gel electrophoresis

Blood and Urine: Collection of blood, urine and other biological fluids, determination of blood groups, Complete Blood count/Picture (CBC/CBP), clotting time, prothrombin time, SGOT, SGPT, kidney function test, pregnancy test, serum electrolytes, urea, creatinine and uric acid, Lipid profile, Vidal's test, Test for malarial parasite, tests for hepatitis, ELISA, PCR
Specialization in Physical Chemistry

CHM-675 Kinetics of Complex Reactions 3(3-0)

Chemical Reactions
Advanced theories of unimolecular reactions, Chain and non-chain complex reactions, Fast reactions, Experimental techniques for measurement of fast reaction kinetics, Kinetics of catalyzed reactions

Photochemical reactions
Introduction, Photochemical reactions, photochemical reactions in gas phase and in solutions, quantum yields, flash photolysis, photochemical reaction kinetics

Interfacial Phenomena
Solid surfaces, Gas solid interfaces, thermodynamics of adsorption, adsorption at liquid surfaces, organized molecular assemblies, colloids and surfactants, liquid interfaces, surface tension and adsorption from solutions.

Recommended Books:

CHM-677 Nuclear and Radiation Chemistry 3(3-0)

Nuclear Chemistry
Introduction to Nuclear chemistry, Nuclear systematic, sources of nuclear instability, nuclear energetics, nuclear fission and fusion

Nuclear Techniques

Radiation Chemistry

Recommended Books:

CHM-683 Material Chemistry 3(3-0)

Physical Chemistry of Macromolecules
Introduction, molecular forces and chemical bonding in macromolecules, configurations and conformation of polymer chains, theories of polymer solutions, spectroscopic analysis, thermal analysis, polymer reheology

Solid State
Introduction, attractive forces, properties of solids, crystal structure, crystal defects, crystallography, theories of bonding, packing of atoms in metals.

Modern Materials
Composite materials, superconductors, conducting polymers, biopolymers, Bullet proof polymers, edible plastics, smart materials, nano particles.

Recommended Books:

5. Joel R. Fried “Polymer Science and Technology” Prentice Hall PTR. 1995.USA.
CHM-685 Physical Chemistry Practicals 2(0 –2)

1. Sugar analysis and inversion studies by polarimetry
2. Verify Beer’s Lambert’s Law for the given solution.
3. Investigate the kinetics of hydrolysis of ethyl acetate in the presence of hydrochloric acid at room temperature and determination of order of reaction.
4. Interpretation of IR and NMR spectra
5. Determination of molecular weight of given sample of polymer viscometrically
6. Thermal analysis of given polymer sample with the help of available established literature
7. Surface characteristics of given polymer sample with the help of available established literature
8. Waste water treatment using chemicals
9. Waste water treatment using advanced oxidation process
10. Study of isotherms and experiments of surface chemistry
11. Preparation of colloidal solution and determination of precipitation value of colloidal solution by using monovalent, bivalent and trivalent cations
12. Determination of apparent molar volume of different sample solutions
13. Calculation of partial molar volume by graphical method
14. Kinetic study of enzyme catalyzed reactions
Specialization in Inorganic chemistry

CHM-687 Main Group Organometallic and Organic Reagents 3(3 - 0)

Main Group Organometallic Reagents
Introduction, Preparation, classes of nucleophilic organometallic reagents organo-Li, S, Sc, Si, B, Sn, Sb and Zn in organic synthesis, control side reaction (Enolization vs. nucleophilic addition, substitution vs. elimination, selectively among functional groups via organometallic reagents

Organic reagents in Inorganic Analysis
Type of reagents, their specific nature and methods of applications with specific examples, Complexometric and gravimetric methods involving various reagents, chelates and chelate effect.

Recommended Books:

CHM-689 Spectroscopic Methods of Analysis 3(3-0)

Recommended Books:

Scheme of Studies M Sc Chemistry

CHM-691 Metal Cluster Compounds 3(3-0)

Recommended Books:

CHM-693 Inorganic Chemistry Practicals 2(0-2)

1. **Conductometry**
 - Titration of strong acid and weak acid with a strong base.
 - Precipitation titration involving AgNO₃ and KCl.
2. **Potentiometry**
 - Determination of K₁, K₂ and K₃ for H₃PO₄.
 - Determination of chloride in the presence of iodide and evaluation of AgI and AgCl.
3. **Spectrophotometry**
 - Micro determination of Cr(III) by Di-phenyllecarbazide.
 - Determination of Fe (II) by 1-10Phenanthroline.
 - Determination of nitrates. Determination of Fe (III) by 8-hydroxyquinoline.
4. **Use of some Organic Reagents for the estimation of various elements by gravimetric estimation.**
 - 8-Hydroxyquinoline Al (III) and Fe (III)
 - Salicylaldoxime: Ni (II) in the presence of Cu (II)
 - Anthranilic acid: Co (II) and Zn (II)
5. **Inorganic Synthesis:**
 - Preparation of at least six inorganic compounds/complexes in a pure state and determination of their state of purity.
Semester 4

Specialization in Analytical Chemistry

CHM-652 Thermal Methods of Analysis 3(3-0)

Thermal Analysis:
Introduction, classification and principles of thermal analysis, thermograms, instrumentations, applications and limitations of thermal analysis.

Thermogravimetric Analysis (TGA) and Derivative Thermal analysis (DTA):
Introduction and principle of thermogravimetric analysis and derivative thermal analysis, its instrumentation, applications, data interpretations, limitations.

Differential Thermal Analysis (DTA):
Introduction and principle of differential thermal analysis, its instrumentation, applications, data interpretations, limitations.

Differential Scanning Calorimetry (DSC):
Introduction and principle of differential scanning calorimetry, its instrumentation, applications, data interpretations, limitations.

Differential Photo-Calorimetry (DPC):
Introduction and principle of evolved gas analysis, its instrumentation, data interpretations, applications.

Evolved Gas Analysis (EGA):
Introduction and principle of evolved gas analysis, its instrumentation, data interpretations, applications.

Thermo-mechanical Analysis (TMA):
Introduction and principle of thermo-mechanical analysis, its instrumentation, applications, data interpretations, limitations.

Dynamic Mechanical Analysis (DMA):
Introduction and principle of dynamic mechanical analysis, its instrumentation, data interpretations, applications.

Di-electric Thermal Analysis (DETA):
Introduction and principle of di-electric thermal analysis, its instrumentation, data interpretations, applications.

Reference Books:
CHM-654 Nuclear Analytical Techniques 3(3-0)

Introduction to Nuclear sciences, Radioactive decay, Production of nuclear radiation, Interaction of radiation with matter, Radio-analytical techniques, Radiation detection and measurement instruments, Role of radiotracers in development of modern nuclear analytical techniques, Applications of radio-tracers in medical, environment, agriculture and industrial.

Reference Books:

CHM-656 Luminescence Spectrophotometry 3(3-0)

Introduction, origin of fluorescence and phosphorescence spectra, Jablonski diagram, activation, deactivation, fluorescence spectrum, fluorescent and phosphorescent species, photoluminescence and structure, factors affecting fluorescence and phosphorescence, fluorescence quenching, quantum yield, instrumentation for fluorescence measurement, sources, wavelength selectors, sampling, detectors, read out devices, instrumentation for phosphorescence measurement, sampling, recording procedure, application of fluorescence and phosphorescence.

Reference Books:
Scheme of Studies M Sc Chemistry

CHM-658 Food and Drug Analysis 3(3-0)

Course Contents:

Introduction to food analysis, food gradients and nutritional values, sampling of food, general methods of analysis. Analysis of milk, butter, wheat flour, meat, beverages, tea, coca, honey and soft drinks.

Pharmaceuticals:
Classification of drugs, test for analysis of different pharmaceuticals, introduction to US and British pharmacopeia.

Forensics:
History and scope of forensic Science, forensic ethics, forensic toxicology. Classification and analysis of narcotics & dangerous drugs, examination of crime scene evidences, fingerprinting, skeletal material to provide scientific opinion for legal.

Reference Books:

Specialization in Organic Chemistry

CHM–660 Organic Polymers 3(3 – 0)

Recommended Books:
CHM–662 Reactive Intermediates and Photochemistry 3(3–0)

Photochemistry:

Recommended Books:

CHM – 664 Disconnection Approach 3(3–0)

The Disconnection Approach

Recommended Books:
Scheme of Studies M Sc Chemistry

CHM – 666 Organic Catalyst and Catalysis 3(3–0)

Homogeneous and heterogeneous catalysis, Acid Catalysis, Base Catalysis, Metal ion catalysis, Hydrogenation, Asymmetric hydrogenation, Hydroboration and Hydrocyanation of olefins, Transformation of alkenes and alkynes i.e. polymerization, metathesis, dimerization and oligomerization and olefin isomerization, oxidation of olefins using catalysts, Metal complexes and Quaternary ammonium compounds in organic synthesis.

Recommended Books:

Specialization in Biochemistry

CHM-668 Molecular Biochemistry 3(3-0)

Recommended Books:

Recommended Books:

Occurrence, sources, absorption, metabolic role, physiological functions, structures and chemistry of water soluble and lipid soluble vitamins, Interactions of various vitamins in intermediary metabolism, hypervitaminosis and deficiency symptoms, water intake and output, volume and composition of body fluids., Regulatory mechanisms, Acid-base balance, physiological buffer systems, pH interactions, abnormalities; acidosis and alkalosis. Bulk and trace minerals; their metabolism, absorption, excretion, distribution, functions, deficiency manifestations, interactions and requirements.

Recommended Books:

CHM-674 Medical Biochemistry 3(3-0)

Structures, functions and disorders of digestive system, lungs, muscles, connective tissues, kidney, heart and membranes. Digestion absorption and Transportation of nutrients. Dynamic state of metabolism. Integration of tissues (Liver, muscle and adipose tissues). Requirements and adjustment to availability, nitrogen economy. Chemical composition, requirements and functions of nutrients. Energy value of foods, calorimetry, RQ, BMR. Balanced diet. Role of nutrition in growth. In born errors of metabolism. hepatitis, diabetes, cancer, acquired immunity deficiency syndrome (AIDS), tuberculosis, etc. preventive measures and treatments

Recommended Books:

Specialization in Inorganic Chemistry

CHM-676 X-ray Spectroscopy 3(3-0)

Introduction, Lattice and unit cell, geometry of crystals, crystal systems, primitive and non primitive cells, Lattice direction and planes crystal shapes. Dimensional relationship, Braggs equation, reciprocal lattice, experimental methods of single & multicrystal (power) analysis, diffraction and diffractrometer, identification and applications.

Recommended Books:

1. B. D. Cullity “Elements of X-ray diffraction” 2nd Ed, Addison-Wesley publishing company, California, USA (1977).
Scheme of Studies M Sc Chemistry

CHM-678 Homogenous Catalysis 3(3-0)

Reaction of CO and hydrogen, Hydroformylation, reductive carbonylation, reduction of CO by hydrogen, synthesis of water gas and shift reactions. Carbonylation reaction, Synthesis of methanol and methyl acetate, adipic ester, other carbonylation and decarbonylation reactions. Catalytic addition of molecules to C-C multiple bonds, Homogeneous hydrogenation, and hydrocylation and hydrocyanation.

Recommended Books:

CHM-684 Radio Nuclear Chemistry 3(3-0)

Fundamentals and applied aspects of Radio activity and nuclear chemistry. Trans-Uranium elements; Natural and artificial radioactivity, methods for isotope production, nuclear reactions; mass spectrograph, Astam mass spectrograph, The structure of the nucleus; nuclear stability and radioactive decay; Types, characteristics and detection of radio active Particles; laws of radioactive decay; the interaction of radiation with matter including radiological health hazards; Processing of the nuclear materials. Accelerators of charged particles Applications of radioisotopes.

Recommended Books:

CHM-686 Magneto Chemistry 3(3-0)

Theory of magnetism, diamagnetism, paramagnetism, ferro-, ferri- and antiferromagnetism, magnetic susceptibility, magnetic moments, Faraday’s & Gouy’s methods, orbital contribution to magnetic moment, Russell-Sanders coupling scheme, derivation of term symbols of for $^1p - ^6p$ and $^1d - ^{10}d$ systems, pigeon holes diagram, effect of temperature on magnetic properties of complexes. Magnetic moment of lanthanides.
Recommended Books:

Specialization in Physical Chemistry

CHM-688 Group Theory and Solutions 3(3-0)

Advanced Group Theory
Group Algebra. Point groups. Classes Symmetry, The character table and representation, Group theory application in chemistry

Solution Chemistry
Physicochemical characteristics of solvents. Solute-solvent interaction, salvation of ions, preferential salvation. Thermodynamic methods for study of solutions

Biophysical Chemistry
Principles of biophysical chemistry; thermodynamic aspect of simple molecules, macro molecules, lipids and biological membranes; nucleic acids and proteins; enzyme kinetics and catalysis; experimental techniques

Recommended Books:

CHM-690 Quantum and Statistical Mechanics 3(3-0)

Statistical Mechanics

Quantum Chemistry

Theoretical and Computational Chemistry

Recommended Books:

CHM-692 Advanced Spectroscopy 3(3-0)

Molecular Spectroscopy
Electromagnetic radiations, interactions of electromagnetic radiations with matter, microwave, infrared and Raman spectroscopy of polyatomic molecules, vibrational-rotational spectra.

Nuclear Magnetic Resonance
Principles of magnetic resonance. Nuclear magnetic resonance (NMR) spectroscopy. Coupling phenomenon in simple (AXn) and complex systems. Relaxation mechanisms and their applications. Dynamic NMR. Applications in structure elucidation.

Electron Spin Resonance
Electron spin resonance spectroscopy (ESR). Principles and applications to solids and solutions.

Recommended Books:
CHM-694 Electrochemical Aspects of Solutions 3(3-0)

Electrochemistry of Solution
Conductance and resistance, Fugacity, activity, activity coefficient, colligative properties of electrolytes, ionic mobility, cell constant, ionic strength

Kinetics of Electrode Process
Theories of electrolytes, interfacial phenomena, electrode kinetics, mechanism of electrode reactions, Butler Volmer equation, cyclic voltametry and its applications

Modern Aspects of Electrochemistry
Electroplating, Bioelectrochemistry, photoelectrochemistry, Electrochemiluminiscence, Batteries, Piezoelectricity, Fuel cell

Recommended Books:

The End